Description Reduction for Restricted Sets of ( 0 , 1 ) Matrices 1

نویسنده

  • Hasmik Sahakyan
چکیده

Any set system can be represented as an n -cube vertices set. Restricted sets of n -cube weighted subsets are considered. The problem considered is in simple description of all set of partitioning characteristic vectors. A smaller generating sets are known as “boundary” and ”steepest” sets and finally we prove that the intersection of these two sets is also generating for the partitioning characteristic vectors. ACM Classification

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix partitions of perfect graphs

Given a symmetric m by m matrix M over 0, 1, ∗, the M -partition problem asks whether or not an input graph G can be partitioned into m parts corresponding to the rows (and columns) of M so that two distinct vertices from parts i and j (possibly with i = j) are nonadjacent if M(i, j) = 0, and adjacent if M(i, j) = 1. These matrix partition problems generalize graph colourings and homomorphisms,...

متن کامل

Dimensionality reduction with subgaussian matrices: a unified theory

We present a theory for Euclidean dimensionality reduction with subgaussian matrices which unifies several restricted isometry property and Johnson-Lindenstrauss type results obtained earlier for specific data sets. In particular, we recover and, in several cases, improve results for sets of sparse and structured sparse vectors, low-rank matrices and tensors, and smooth manifolds. In addition, ...

متن کامل

Explicit constructions of RIP matrices and related problems

We give a new explicit construction of n × N matrices satisfying the Restricted Isometry Property (RIP). Namely, for some ε > 0, large N and any n satisfying N1−ε ≤ n ≤ N , we construct RIP matrices of order k ≥ n and constant δ−ε. This overcomes the natural barrier k = O(n) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredien...

متن کامل

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property

In this note, we prove that matrices whose entries are all 0 or 1 cannot achieve good performance with respect to the Restricted Isometry Property (RIP). Most currently known deterministic constructions of matrices satisfying the RIP fall into this category, and hence these constructions suffer inherent limitations. In particular, we show that DeVore’s construction of matrices satisfying the RI...

متن کامل

Isometric sketching of any set via the Restricted Isometry Property

In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007